

This year, the following major changes are introduced.

1. the omniVision camera module is replaced by a multiVision module
2. in teamplay the concept of heightmaps is introduced, to achieve dynamic positioning.
3. in motion, several activities are ongoing to enable faster driving:

• the PID speed setpoint controller is replaced with a setpoint generator

• a new processing layer 'motionPlanning' is introduced to improve software architecture and
increase shoot accuracy

• as motion board replacement the BeagleBoneBlack is considered
4. the keeper frame is now extendible
5. as a consequence of the new multiVision system, a new sensor is needed to verify ball possession

MotionPlanning

In the software architecture, a new component motionPlanning was introduced.
MotionPlanning is responsible for translating high-level teamplay commands into motion setpoints. This
includes sequencing, timing and tolerances. Each software heartbeat, it reports back to teamplay what the
state is of the requested command: passed, running or failed. This then gives teamplay the choice of continuing
with current command, or switching to a different command.

Introduction of this component solves a number of issues:

• wildgrowth: teamplay contained too much motion logic and motion thresholds in its actions layer and
even in the behavior trees
 motion logic, thresholds and tricks are now applied in motionPlanning, not in teamplay

• interface spaghetti: teamplay had direct connections with several lower-level motion components, even
with hardwareAbstractionLayer
 teamplay now only communicates in a high-level abstraction with motionPlanning, which then will

communicate with the lower components (shootPlanning, pathPlanning, etc.)

• poor extendibility: it was relatively hard to apply seemingly simple functional extensions, such as kicker
height adjustment during aiming for shot, or sprints for the ball
 these extensions can now simply be introduced in the respective command implementation in

motionPlanning

• code duplication in python scripts due to limited test interfaces
 motionPlanning offers straightforward test interface wrappers around the commands it provides to

teamplay; these test interfaces block until done and are now called from python test/scripting suite
during e.g. technical challenge, or calibration / tuning.

The interface between teamplay and motionPlanning now is:

As first major functional use case for this component, we improved shoot accuracy while also increasing
rotation speed with ball.
The following table shows a collection of problems, causes and solutions we identified and (partially)
addressed.

To summarize, our shooting speed and accuracy was improved by

• setting kicker height during rotation,

• waiting for the robot to settle on target, to decouple motion (tuning) issues like overshoot from shoot
accuracy,

• using a distance metric instead of a static angle threshold for shoot accuracy,

• increasing rotation speed limit with ball from 1.8rad/s to 3.0rad/s.

