

This year, the following major changes are introduced.

1. the omniVision camera module is replaced by a multiVision module
2. in teamplay the concept of heightmaps is introduced, to achieve dynamic positioning.
3. in motion, several activities are ongoing to enable faster driving:

• the PID speed setpoint controller is replaced with a setpoint generator

• a new processing layer 'motionPlanning' is introduced to improve software architecture and
increase shoot accuracy

• as motion board replacement the BeagleBoneBlack is considered
4. the keeper frame is now extendible
5. as a consequence of the new multiVision system, a new sensor is needed to verify ball possession

MotionPlanning

In the software architecture, a new component motionPlanning was introduced.
MotionPlanning is responsible for translating high-level teamplay commands into motion setpoints. This
includes sequencing, timing and tolerances. Each software heartbeat, it reports back to teamplay what the
state is of the requested command: passed, running or failed. This then gives teamplay the choice of continuing
with current command, or switching to a different command.

Introduction of this component solves a number of issues:

• wildgrowth: teamplay contained too much motion logic and motion thresholds in its actions layer and
even in the behavior trees
 motion logic, thresholds and tricks are now applied in motionPlanning, not in teamplay

• interface spaghetti: teamplay had direct connections with several lower-level motion components, even
with hardwareAbstractionLayer
 teamplay now only communicates in a high-level abstraction with motionPlanning, which then will

communicate with the lower components (shootPlanning, pathPlanning, etc.)

• poor extendibility: it was relatively hard to apply seemingly simple functional extensions, such as kicker
height adjustment during aiming for shot, or sprints for the ball
 these extensions can now simply be introduced in the respective command implementation in

motionPlanning

• code duplication in python scripts due to limited test interfaces
 motionPlanning offers straightforward test interface wrappers around the commands it provides to

teamplay; these test interfaces block until done and are now called from python test/scripting suite
during e.g. technical challenge, or calibration / tuning.

The interface between teamplay and motionPlanning now is:

As first major functional use case for this component, we improved shoot accuracy while also increasing
rotation speed with ball.
The following table shows a collection of problems, causes and solutions we identified and (partially)
addressed.

To summarize, our shooting speed and accuracy was improved by

• setting kicker height during rotation,

• waiting for the robot to settle on target, to decouple motion (tuning) issues like overshoot from shoot
accuracy,

• using a distance metric instead of a static angle threshold for shoot accuracy,

• increasing rotation speed limit with ball from 1.8rad/s to 3.0rad/s.

