
Model driven Robot behavior

Separate robot behavior from SW code

June 2016
World Championship Leipzig

Contents
• Introduction

– Falcons SW architecture
– Teamplay functionality

• Separating logic from data

• Questions

 3

Falcons Software Architecture
Vision

Worldmodel

Teamplay

Pathplanning Shootplanning

HAL

Actuators: Motion, shooter

Coaching &
Monitoring

 4

Teamplay: functionality and architecture
● Based on synchronized worldmodel

determine which action to take
– Inputs from Worldmodel:

● Where is the ball
● Where are my teammates etc.

– Actions: Pass, shoot, move etc.

– Game states, roles, behaviors,
actions

 5

Autonomous robots:
Smart behavior makes the difference

● Smart autonomous behavior key differentiator in MSL
● To allow rapid prototyping and enable non-core software

engineers to improve autonomous behavior, separate behavior
(data) from code (logic):
– “Behavior trees” to determine robot's activity

– Graphical editor to create and update behavior trees

– Framework to read in and execute behavior trees
● One time programming effort
● Load data at SW start → no need to re-build/deploy the software when

behavior is updated

 6

Logic: Behavior trees
Trees consist of nodes and leafs

● Nodes are decision points: “Do I have the ball, yes or no”

● Leafs are actions: shoot/move etc.

● Flow control: sequence with/without memory etc.

Role determines a behavior; evaluate behavior tree:

● Evaluate each child (from left to right)

● When leaf is reached, action is started

● Each leaf returns passed/running/failed

● Running: return to leaf in next iteration

● Failed: Return to parent, evaluate next child

● Passed: Parent is completed and returns

 7

Editing / creating behavior: graphical editor

● Easy to use; once decision points (nodes) are available,
creating complex behavior is quick and painless

Questions
Feel free to drop by our team corner!

 9

Behavior trees versus Decision trees
Decision trees:

- Always evaluated from root to leaf

- Traverse down until a leaf is reached

- Ideal for yes/no decisions

Behavior trees:

● Evaluate each child (from left to right)

● When leaf is reached, behavior is started

● Each leaf returns passed/running/failed

● Running: return to leaf in next iteration

● Failed: Return to parent, evaluate next
child

● Passed: Parent is completed and
returns

● Node has memory

● Can create sequence of actions

● Useful for complex behaviors!

 10

The Falcons team

	Slide 1
	Contents
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Questions
	Slide 9
	Slide 10

