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Vision
Synchronizing Asynchronous Cameras



Vision Introduction
4 Raspberry pi cameras (+ 4 Raspberry pi boards)

- low budget (mobile phone market)
- rolling shutter
- no synchronization input
- camera access through i2c
- camera driver (GPU) closed source 

Used for
- localization 
- ball detection
- obstacle detection

Localization requires information from all 4 cameras



Vision Synchronization Problem Statement
Image displacement when captured on different time when moving

top view



Vision Problem statement
Image displacement when captured on different time when moving
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Vision Synchronization Numbers
driving 5 m/s (18km/h)
acceptable error 6.5cm (line width 13cm)
acceptable delta time 0.065/5 = 13ms

rotating 1 turn in 2 second (180 deg/sec)
acceptable angle error 2 deg
acceptable delta time 2/180 ~= 11 ms

rolling shutter
- 10 ms (for region of interest)

camera captures at 40 frames per second (FPS)
- capture delta time between cameras maximal 25 ms



Vision Synchronization Target

Synchronize capture delta time from 25 ms to less than 5 ms



Vision Synchronization Scenarios

higher FPS
NO: limited by Raspberry PI

start/stop cameras in controlled way
NO: video stream interrupted / difficult to perform on correct time

change camera pixel clock
NO: pixel clock control granularity too large / limitations Raspberry Pi

slightly modify amount of pixels per line
YES: software control

slightly modify amount of lines per frame
YES: software control (but larger granularity than pixels)

FPS = constant * oscillator / ( lines * pixels )



Vision Synchronization Implementation
camera 0 = time reference
send start of frame to CPU box

- received after camera 0
- remove few pixels (for short while)

- received before camera 0
- add few pixels (for short while)

- received nearly at the same time
- use default pixel size

make use of i2c to access camera chip



“The Plank” Synchronization Test Setup

blinking lightstrip
8 LEDs * 40Hz = 320Hz

4 x Camera



Vision Result

before after

led blinking lightstrip at n * fps seen by all 4 cameras



Vision Synchronization Roadmap

Increase frame rate
- lower impact rolling shutter

Synchronize cameras over all robots
- moving ball triangulation



Keeper extension actuators

CPU Arduino Driver Actuator
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