
Scientific and Engineering
presentation

Real Time DataBase

Improvement logging

Shared
data

Robot Data
Logging file

Robot 1

Local
data Visualizer

Coach

COMM

Snapshot

Playback

Robot Data
Logging file

Playback

Shared
data

Robot Data
Logging file

Robot 2

Local
data

Snapshot

Playback

COMM

Snapshot

Real time

Storage

Analysis

VisualizerVisualizer Visualizer

Improvement Stimulation

vision (stream)

world state (stream)

Reference Robot Data Logging file

time

SW update
New Robot Data Logging file

Improvement Comm2

HW status

Path
Planning

Data

World
model
data

Vision data

Teamplay
data

Config

HF
data

LF
data

Update
when

changed

Every tick

Every X tick

Irregular

IEEE 802.11X

Events
https://github.com/Falcons-Robocup

Reduction by a
factor of two
achieved, more
possible

Vision
Synchronizing Asynchronous Cameras

Vision Introduction
4 Raspberry pi cameras (+ 4 Raspberry pi boards)

- low budget (mobile phone market)
- rolling shutter
- no synchronization input
- camera access through i2c
- camera driver (GPU) closed source

Used for
- localization
- ball detection
- obstacle detection

Localization requires information from all 4 cameras

Vision Synchronization Problem Statement
Image displacement when captured on different time when moving

top view

Vision Problem statement
Image displacement when captured on different time when moving

cam0 cam1

cam2

cam3

disruption!!

top view

Vision Synchronization Numbers
driving 5 m/s (18km/h)
acceptable error 6.5cm (line width 13cm)
acceptable delta time 0.065/5 = 13ms

rotating 1 turn in 2 second (180 deg/sec)
acceptable angle error 2 deg
acceptable delta time 2/180 ~= 11 ms

rolling shutter
- 10 ms (for region of interest)

camera captures at 40 frames per second (FPS)
- capture delta time between cameras maximal 25 ms

Vision Synchronization Target

Synchronize capture delta time from 25 ms to less than 5 ms

Vision Synchronization Scenarios

higher FPS
NO: limited by Raspberry PI

start/stop cameras in controlled way
NO: video stream interrupted / difficult to perform on correct time

change camera pixel clock
NO: pixel clock control granularity too large / limitations Raspberry Pi

slightly modify amount of pixels per line
YES: software control

slightly modify amount of lines per frame
YES: software control (but larger granularity than pixels)

FPS = constant * oscillator / (lines * pixels)

Vision Synchronization Implementation
camera 0 = time reference
send start of frame to CPU box

- received after camera 0
- remove few pixels (for short while)

- received before camera 0
- add few pixels (for short while)

- received nearly at the same time
- use default pixel size

make use of i2c to access camera chip

“The Plank” Synchronization Test Setup

blinking lightstrip
8 LEDs * 40Hz = 320Hz

4 x Camera

Vision Result

before after

led blinking lightstrip at n * fps seen by all 4 cameras

Vision Synchronization Roadmap

Increase frame rate
- lower impact rolling shutter

Synchronize cameras over all robots
- moving ball triangulation

Keeper extension actuators

CPU Arduino Driver Actuator

?

